Integrated Rate Law

$\mathrm{A} \rightarrow \mathrm{B}$	Zero Order	First Order	Second Order
Rate Law	Rate $=\mathrm{k}$	Rate $=\mathrm{k}[\mathrm{A}]^{1}$	Rate $=\mathrm{k}[\mathrm{A}]^{2}$
Units of k	$\mathrm{M}^{1} \mathrm{t}^{-1}$	$\mathrm{M}^{0} \mathrm{t}^{-1}$ or t $^{-1}$	$\mathrm{M}^{-1} \mathrm{t}^{-1}$
Half-life $\left(\mathrm{t}_{1 / 2}\right)$	$\frac{[A]_{0}}{2 k}$	$\frac{\operatorname{Ln2}}{k}$	$\frac{1}{k[A]_{0}}$
Integrated Rate	$\mathrm{A}_{\mathrm{F}}=-\mathrm{kt}+[\mathrm{A}]_{0}$	$\ln \left[\mathrm{~A}_{\mathrm{F}}\right]=-\mathrm{kt}+\ln \left[\mathrm{A}_{0}\right]$	$1 /\left[\mathrm{A}_{\mathrm{F}}\right]=\mathrm{kt}+1 /\left[\mathrm{A}_{0}\right]$
Law $\mathrm{y}=\mathrm{mx}+\mathrm{b}$	Slope: $\mathrm{m}=-\mathrm{k}$	$\operatorname{Slope}: \mathrm{m}=-\mathrm{k}$	Slope: $\mathrm{m}=+\mathrm{k}$
Plot	$[\mathrm{A}] \mathrm{vs} \mathrm{t}$	$\operatorname{Ln}[\mathrm{A}] \mathrm{vs} \mathrm{t}$	$1 /[\mathrm{A}] \mathrm{vs} \mathrm{t}$

Note: $\mathrm{k}=$ rate constant, $[\mathrm{A}]_{0}=$ initial concentration, $[\mathrm{A}]_{\mathrm{F}}=$ final concentration

- The higher the order, the more effective the reaction is.
- Unit of k for any order: $\mathrm{M}^{1-\mathrm{n}} \cdot \mathrm{t}^{-1}$
- Where n is the number of order. For example, if it is second order, $\mathrm{n}=2$.
- The half-life of first order doesn't depend on initial concentration while zero and second order do. Also, as K increases, A_{0} decreases and vice versa for all cases.

Example:

* The initial concentration of a reactant in a zero order reaction is 0.75 M . The rate constant k is $0.015 \mathrm{M} / \mathrm{min}$. What will be the concentration of the reaction in 15 minutes? How long it will take the concentration to be reduced to 0.06 M ?

Because this reaction is in zero order, we are going to use this equation:

$$
\mathrm{A}_{\mathrm{F}}=-\mathrm{kt}+[\mathrm{A}]_{0}
$$

- For the first question, we have to plug the value for t to the equation to solve for A_{F}. We have: $\mathrm{A}_{\mathrm{F}}=-0.015 \mathrm{M} / \mathrm{min} .15 \mathrm{~min}+0.75 \mathrm{M}=0.525 \mathrm{M}$
- For the second question, we instead have the value for A_{F}, and is asked to solve for t . Using the same equation, we have: $0.06 \mathrm{M}=-0.015 \mathrm{M} / \mathrm{min} . \mathrm{t}+$ 0.75 M . To solve for t , we have: $\mathrm{t}=(0.06 \mathrm{M}-0.75 \mathrm{M}) /(-0.015 \mathrm{M} / \mathrm{min})=46$ minutes.

