Transformation of the Graphs

Summary of Transformations

Start with the basic graph of $y=f(x)$.

To Graph:

Draw the Graph of f and:

Functional Change to $f(x)$
Horizontal shifts

$$
\begin{array}{llll}
y=f(x+c), & c>0 & \text { Shift the graph of } f \text { to the left } c \text { units. } \\
y=f(x-c), & c>0 & \text { Shift the graph of } f \text { to the right } c \text { units. }
\end{array}
$$

Replace x by $x+c$.
Replace x by $x-c$.

Ex) Graph the function, $y=(x+2)^{2}$
Start with the basic graph: $y=x^{2}$

Ex) Graph the function, $y=(x-5)^{3}$
Start with the basic graph: $y=x^{3}$

Compressing or stretching

$$
\begin{array}{llll}
y=a f(x), & a>0 & \begin{array}{l}
\text { Multiply each } y \text {-coordinate of } y=f(x) \text { by } a . \\
\text { Stretch the graph of } f \text { vertically if } a>1 . \\
\text { Compress the graph of } f \text { vertically if } 0<a<1 .
\end{array} & \text { Multiply } f(x) \text { by } c \\
y=f(a x), \quad a>0 & \begin{array}{l}
\text { Multiply each } x \text {-coordinate of } y=f(x) \text { by } \frac{1}{a} . \\
\text { Stretch the graph of } f \text { horizontally if } 0<a<1 . \\
\text { Compress the graph of } f \text { horizontally if } a>1 .
\end{array} & \text { Replace } x \text { by } a x .
\end{array}
$$

Ex) Graph the functions, $y=5 x^{2}$ and $y=\frac{1}{5} x^{2}$
Start with the basic graph: $y=x^{2}$

Ex) Graph the function, $y=\sqrt{3 x}$ and $y=\sqrt{\frac{1}{3} x}$
Start with the basic graph: $y=\sqrt{x}$

Reflection about the x-axis

$$
y=-f(x) \quad \text { Reflect the graph of } f \text { about the } x \text {-axis. } \quad \text { Multiply } f(x) \text { by }-1 .
$$

Ex) Graph the function, $y=-\frac{1}{x^{2}}$
Start with the basic graph: $y=\frac{1}{x^{2}}$

Reflection about the \boldsymbol{y}-axis
$y=f(-x) \quad$ Reflect the graph of f about the y-axis. Replace x by $-x$.
Ex) Graph the function, $y=\sqrt{-x}$
Start with the basic graph: $y=\sqrt{x}$

Vertical shifts

$y=f(x)+k, \quad k>0 \quad$ Raise the graph of f by k units.

Add k to $f(x)$.
Subtract k from $f(x)$.

Ex) Graph the function, $y=x^{2}+3$
Start with the basic graph: $y=x^{2}$

Ex) Graph the function, $y=x^{2}-3$
Start with the basic graph: $y=x^{2}$

Order of Transformations

A function involving more than one transformation can be graphed by performing transformations in the following order:

1. Horizontal shifting
2. Stretching or compressing
3. Reflecting
4. Vertical shifting

Exercise

1. Use the given graph of $y=f(x)$ below to obtain the graph of $y=f(-x)$ and $y=2 f(x)$.

From the graph	To find points on the graph, $y=f(-x)$		To find points on the graph, $y=2 f(x)$			
$(\boldsymbol{x}, \boldsymbol{y})$	x	$y=f(-x)$	$(\boldsymbol{x}, \boldsymbol{y})$	x	$y=2 f(x)$	$(\boldsymbol{x}, \boldsymbol{y})$
$(-\mathbf{4},-\mathbf{2})$	-4	$f(-x)=f(4)=0$	$(-\mathbf{4}, \mathbf{0})$	-4	$2 f(x)=2 f(-4)=2(-2)=-4$	$(-\mathbf{4},-\mathbf{4})$
$(-\mathbf{2}, \mathbf{0})$	-2	$f(-x)=f(2)=2$		-2		
$(\mathbf{0}, \mathbf{2})$	0		0			
$(\mathbf{2}, \mathbf{2})$	2		2			
$(\mathbf{4}, \mathbf{0})$	4			4		

2. Graph the functions of $f(x)=\sqrt{x-2}$ and $g(x)=\sqrt{x+4}$.

Basic graph: $y=\sqrt{x}$

To obtain the graphs, start with the basic graph $y=\sqrt{x}$.

1) $f(x)=\sqrt{x-2}$

Shift the basic graph horizontally 2 units to the right.
2) $g(x)=\sqrt{x+4}$

Shift the basic graph horizontally 4 units to the left.

To obtain the specific points on the graphs,

x	$f(x)=\sqrt{x-2}$	$(x, f(x))$	$g(x)=\sqrt{x+4}$	$(x, g(x))$

3. Graph the function of $h(x)=|x+3|-2$.

Basic graph: $y=|x|$

To obtain the graph of $h(x)$, start with the basic graph $y=|x|$.

1) Horizontal Shifting: $|x| \rightarrow|x+3|$

Shift the basic graph horizontally to the left 3 units.
2) Vertical Shifting: $|x+3| \rightarrow|x+3|-2$

Shift the basic graph vertically down 2 units.

To obtain the specific points on the graph,

x	$h(x)=\|x+3\|-2$	$(x, h(x))$

4. Graph the function of $f(x)=3 \sin x$.

Basic graph: $y=\sin x$

To obtain the graph of $f(x)$, start with the basic graph $y=\sin x$.
Stretching: $\sin x \rightarrow 3 \sin x$
Stretch vertically by a factor of 3

To obtain specific points on the graph,

x	$f(x)=3 \sin x$	$(x, f(x))$

5. Graph the function of $g(x)=\frac{1}{2}|x|$.

Basic graph: $y=|x|$

To obtain the graph of $g(x)$, start with the basic graph $y=|x|$.
Compression: $|x| \rightarrow \frac{1}{2}|x|$
Compress vertically by a factor of $1 / 2$

To obtain specific points on the graph,

x	$g(x)=\frac{1}{2}\|x\|$	$(x, g(x))$

6. Graph the function of $f(x)=2^{-x}$ and $g(x)=-2^{x}$.

Basic graph: $y=2^{x}$

To obtain the graph of $f(x)$ and $g(x)$, start with the basic graph $y=2^{x}$.

1) $f(x)=2^{-x}$

Reflection to the y-axis: $2^{x} \rightarrow 2^{-x}$
2) $g(x)=-2^{x}$

Reflection to the x-axis: $2^{x} \rightarrow-2^{x}$

To obtain the specific points on the graphs,

x	$f(x)=2^{-x}$	$(x, f(x))$	$g(x)=-2^{x}$	$(x, g(x))$

7. Graph the function of $h(x)=\frac{3}{x-2}+1$.

Basic graph: $y=\frac{1}{x}$

To obtain the graph of $h(x)$, start with the basic graph $y=\frac{1}{x}$.

1) Horizontal shifting: $\frac{1}{x} \rightarrow \frac{1}{x-2}$

Shift the basic graph horizontally 2 units to the right.
2) Stretching: $\frac{1}{x-2} \rightarrow \frac{3}{x-2}$

Stretch vertically by a factor of 3 .
3) Vertical shifting: $\frac{3}{x-2} \rightarrow \frac{3}{x-2}+1$ Shift the graph vertically up 1 unit.

To obtain the specific points on the graph,

x	$h(x)=\frac{3}{x-2}+1$	$(x, h(x))$

Good Graphs to Know

$$
f(x)=x
$$

$f(x)=c, c=3$

$f(x)=\sin x$

$$
f(x)=\sin ^{-1} x
$$

$$
f(x)=x^{2}
$$

$f(x)=x^{3}$

$f(x)=\frac{1}{x}$

$$
f(x)=\cos x
$$

$$
f(x)=\sqrt[3]{x}
$$

$$
f(x)=\frac{1}{x^{2}}
$$

$$
f(x)=\tan x
$$

