Transformation of the Graphs

Summary of Transformations

Start with the basic graph of y = f(x).

To Graph: Draw the Graph of f and: Functional Change to f(x)Horizontal shifts $y = f(x+c), \qquad c > 0 \qquad \text{Shift the graph of } f \text{ to the left } c \text{ units.} \qquad \qquad \text{Replace } x \text{ by } x+c.$ $y = f(x-c), \qquad c > 0 \qquad \text{Shift the graph of } f \text{ to the right } c \text{ units.} \qquad \qquad \text{Replace } x \text{ by } x-c.$

Ex) Graph the function, $y = (x + 2)^2$

Start with the basic graph: $y = x^2$

Ex) Graph the function, $y = (x - 5)^3$

Start with the basic graph: $y = x^3$

Compressing or stretching

$$y = af(x), \qquad a > 0$$

Multiply each y-coordinate of y = f(x) by a.

Stretch the graph of f vertically if a > 1.

Compress the graph of f vertically if 0 < a < 1.

$$y = f(ax)$$
, $a > 0$ Multiply each x-coordine
Stretch the graph of f

Multiply each x-coordinate of y = f(x) by $\frac{1}{a}$. Stretch the graph of f horizontally if 0 < a < 1. Compress the graph of f horizontally if a > 1. Replace x by ax.

Multiply f(x) by a.

Ex) Graph the functions, $y = 5x^2$ and $y = \frac{1}{5}x^2$

Ex) Graph the function, $y = \sqrt{3x}$ and $y = \sqrt{\frac{1}{3}x}$

Start with the basic graph: $y = x^2$

Start with the basic graph: $y = \sqrt{x}$

Reflection about the x-axis

$$y = -f(x)$$

Reflect the graph of f about the x-axis.

Multiply f(x) by -1.

Ex) Graph the function, $y = -\frac{1}{x^2}$

Start with the basic graph: $y = \frac{1}{x^2}$

Reflection about the y-axis

$$y = f(-x)$$

Reflect the graph of f about the y-axis.

Replace x by -x.

Ex) Graph the function, $y = \sqrt{-x}$

Start with the basic graph: $y = \sqrt{x}$

Vertical shifts

y = f(x) + k, k > 0 Raise the graph of f by k units.

y = f(x) - k, k > 0 Lower the graph of f by k units.

Add k to f(x). Subtract k from f(x).

Ex) Graph the function, $y = x^2 + 3$

Start with the basic graph: $y = x^2$

Ex) Graph the function, $y = x^2 - 3$

Start with the basic graph: $y = x^2$

Order of Transformations

A function involving more than one transformation can be graphed by performing transformations in the following order:

- 1. Horizontal shifting
- 2. Stretching or compressing
- 3. Reflecting
- 4. Vertical shifting

Exercise

1. Use the given graph of y = f(x) below to obtain the graph of y = f(-x) and y = 2f(x).

From the graph	To find points on the graph, $y = f(-x)$			To find points on the graph, $y = 2f(x)$		
(x, y)	x	y = f(-x)	(x, y)	x	y = 2f(x)	(x, y)
(-4, -2)	-4	f(-x) = f(4) = 0	(-4, 0)	-4	2f(x) = 2f(-4) = 2(-2) = -4	(-4, -4)
(-2, 0)	-2	f(-x) = f(2) = 2		-2		
(0,2)	0			0		
(2,2)	2			2		
(4,0)	4			4		

2. Graph the functions of $f(x) = \sqrt{x-2}$ and $g(x) = \sqrt{x+4}$.

Basic graph:
$$y = \sqrt{x}$$

To obtain the graphs, start with the basic graph $y = \sqrt{x}$.

- 1) $f(x) = \sqrt{x-2}$ Shift the basic graph horizontally 2 units to the right.
- 2) $g(x) = \sqrt{x+4}$ Shift the basic graph horizontally 4 units to the left.

To obtain the specific points on the graphs,

			0 1 .		
x	$f(x) = \sqrt{x-2}$	(x,f(x))	$g(x) = \sqrt{x+4}$	(x,g(x))	

3. Graph the function of h(x) = |x + 3| - 2.

Basic graph: y = |x|

To obtain the graph of h(x), start with the basic graph y = |x|.

- 1) Horizontal Shifting: $|x| \rightarrow |x + 3|$ Shift the basic graph horizontally to the left 3 units.
- 2) Vertical Shifting: $|x + 3| \rightarrow |x + 3| 2$ Shift the basic graph vertically down 2 units.

To obtain the specific points on the graph,

x	h(x) = x+3 - 2	(x,h(x))

4. Graph the function of $f(x) = 3 \sin x$.

Basic graph: $y = \sin x$

To obtain the graph of f(x), start with the basic graph $y=\sin x$. Stretching: $\sin x\to 3\sin x$ Stretch vertically by a factor of 3

To obtain specific points on the graph,

10 00 tani ope oni o ponito on tire 8. apri)				
x	$f(x) = 3\sin x$	(x,f(x))		

5. Graph the function of $g(x) = \frac{1}{2}|x|$.

Basic graph:
$$y = |x|$$

To obtain the graph of g(x), start with the basic graph y=|x|. Compression: $|x|\to \frac{1}{2}|x|$ Compress vertically by a factor of 1/2

To obtain specific points on the graph,

x	$g(x) = \frac{1}{2} x $	(x,g(x))

6. Graph the function of $f(x) = 2^{-x}$ and $g(x) = -2^{x}$.

Basic graph: $y = 2^x$

To obtain the graph of f(x) and g(x), start with the basic graph $y = 2^x$.

1) $f(x) = 2^{-x}$

Reflection to the *y*-axis: $2^x \rightarrow 2^{-x}$

2) $g(x) = -2^x$

Reflection to the *x*-axis: $2^x \rightarrow -2^x$

To obtain the specific points on the graphs,

x	$f(x) = 2^{-x}$	(x, f(x))	$g(x) = -2^x$	(x,g(x))

7. Graph the function of $h(x) = \frac{3}{x-2} + 1$.

Basic graph:
$$y = \frac{1}{x}$$

- To obtain the graph of h(x), start with the basic graph $y=\frac{1}{x}$.

 1) Horizontal shifting: $\frac{1}{x} \to \frac{1}{x-2}$ Shift the basic graph horizontally 2 units to the right.

 2) Stretching: $\frac{1}{x-2} \to \frac{3}{x-2}$ Stretch vertically by a factor of 3.

 3) Vertical shifting: $\frac{3}{x-2} \to \frac{3}{x-2} + 1$ Shift the graph vertically up 1 unit.

To obtain the specific points on the graph,

	1 1 0 1 7	
x	$h(x) = \frac{3}{x-2} + 1$	(x,h(x))

Good Graphs to Know

$$f(x) = x$$

$$f(x) = x^2$$

$$f(x) = \sqrt{x}$$

$$f(x) = |x|$$

$$f(x) = x^3$$

$$f(x) = \sqrt[3]{x}$$

$$f(x) = c, c = 3$$

$$f(x) = \frac{1}{x}$$

$$f(x) = \frac{1}{x^2}$$

$$f(x) = \sin x$$

$$f(x) = \cos x$$

$$f(x) = \tan x$$

$$f(x) = \sin^{-1} x$$

$$f(x) = \cos^{-1} x$$

$$f(x) = \tan^{-1} x$$

