The Parabola: Only 1 term is being squared!

$$(x-h)^2 = 4a(y-k)$$

The parabola opens up (a>0) or down (a<0) *

$$(y-k)^2 = 4a(x-h)$$

The parabola opens right (a>0) or left (a<0) *

- The vertex is the point (h,k)
- The distance from the vertex to the focus and directrix is a
- The distance from the focus to each latus rectum is 2a

The Ellipse: Two squared terms being added! (a² is the larger denominator) and always a>b.

$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$$
 Major axis is parallel to x-axis

$$\frac{(x-h)^2}{b^2} + \frac{(y-k)^2}{a^2} = 1$$

Major axis is parallel to y-axis

- The center is the point (h,k)
- The distance from the center to each vertex is a
- The distance from the center to each focus is **c**
- The distance from the center to co-vertex is **b**
- Length of the major axis is 2a
- Length of the minor axis is 2b
- Formula for c: $c^2 = a^2 b^2$

The Hyperbola: Two squared terms being subtracted! (a<c)

$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$$

 $\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{h^2} = 1$ Left/Right with asymptotes at $y - k = \pm \frac{b}{a}(x-h)$

$$\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$$

 $\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{h^2} = 1$ Up/Down with asymptotes at $y - k = \pm \frac{a}{b}(x-h)$

- The center is the point (h,k)
- The distance from the center to each vertex is a
- The distance from the center to each focus is c
- The distance from the center to co-vertex is b
- a is not always larger in hyperbola
- a² is always with the positive term
- Formula for c: $c^2 = a^2 + b^2$

The Circle

$$(x-h)^2 + (y-k)^2 = r^2$$

- The center is the point (h,k)
- The distance from the center to any point on the circle (the radius is r)
- The Circumference of a circle is $C = 2\pi r$
- The area of a circle is $A = \pi r^2$

