The Parabola: Only 1 term is being squared!
$(x-h)^{2}=4 a(y-k) \quad$ The parabola opens up $(\mathrm{a}>0)$ or down $(\mathrm{a}<0)$ *
$(y-k)^{2}=4 a(x-h) \quad$ The parabola opens right $(\mathrm{a}>0)$ or left $(\mathrm{a}<0) *$

- The vertex is the point (h, k)
- The distance from the vertex to the focus and directrix is a
- The distance from the focus to each latus rectum is $\mathbf{2 a}$

The Ellipse: Two squared terms being added! (a² is the larger denominator) and always $\mathbf{a}>\mathbf{b}$.
$\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1$
Major axis is parallel to x -axis
$\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1$
Major axis is parallel to y-axis

- The center is the point (h,k)
- The distance from the center to each vertex is a
- The distance from the center to each focus is \mathbf{c}
- The distance from the center to co-vertex is \mathbf{b}
- Length of the major axis is 2a
- Length of the minor axis is $\mathbf{2 b}$
- Formula for c: $\boldsymbol{c}^{2}=\boldsymbol{a}^{2}-\boldsymbol{b}^{2}$

The Hyperbola: Two squared terms being subtracted! (a<c)
$\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1 \quad$ Left/Right with asymptotes at $y-k= \pm \frac{b}{a}(x-h)$
$\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1$ Up/Down with asymptotes at $y-k= \pm \frac{a}{b}(x-h)$

- The center is the point (h, k)
- The distance from the center to each vertex is a
- The distance from the center to each focus is c
- The distance from the center to co-vertex is b
- a is not always larger in hyperbola
- a^{2} is always with the positive term
- Formula for c: $\boldsymbol{c}^{2}=\boldsymbol{a}^{2}+\boldsymbol{b}^{2}$

The Circle

$(x-h)^{2}+(y-k)^{2}=r^{2}$

- The center is the point (h, k)
- The distance from the center to any point on the circle (the radius is r)
- The Circumference of a circle is $C=2 \pi r$
- The area of a circle is $A=\pi r^{2}$

