Other Equations			
Name	Cardioid	Limaçon without inner loop	Limaçon with inner loop
Polar equations	$r = a \pm a \cos \theta, a > 0$	$r = a \pm b \cos \theta$, $0 < b < a$	$r = a \pm b \cos \theta$, $0 < a < b$
	$r = a \pm a \sin \theta, \ a > 0$	$r = a \pm b \sin \theta$, $0 < b < a$	$r = a \pm b \sin \theta$, $0 < a < b$
Typical graph	ν _†	y _†	Уļ
,	×	*	*
Name	Lemniscate	Rose with three petals	Rose with four petals
Polar equations	$r^2 = a^2 \cos(2\theta), a \neq 0$	$r = a \sin(3\theta), a > 0$	$r = a \sin(2\theta), a > 0$
	$r^2 = a^2 \sin(2\theta), a \neq 0$	$r = a\cos(3\theta), a > 0$	$r = a\cos(2\theta), a > 0$
Typical graph	y ₁	y _†	4
	*	× ×	→

Complex Numbers and De Moivre's Theorem

Polar form of a complex

number

De Moivre's Theorem

nth root of a complex number $w = r(\cos\theta_0 + i\sin\theta_0)$

If z = x + yi, then $z = r(\cos \theta + i \sin \theta)$, where $r = |z| = \sqrt{x^2 + y^2}$, $\sin \theta = \frac{y}{r}$, $\cos \theta = \frac{x}{r}$, $0 \le \theta < 2\pi$.

If $z = r(\cos\theta + i\sin\theta)$, then $z^n = r^n [\cos(n\theta) + i\sin(n\theta)]$,

where $n \ge 1$ is a positive integer.

 $z_k = \sqrt[n]{r} \left[\cos \left(\frac{\theta_0}{n} + \frac{2k\pi}{n} \right) + i \sin \left(\frac{\theta_0}{n} + \frac{2k\pi}{n} \right) \right], \quad k = 0, \dots, n-1,$ where $n \ge 2$ is an integer

Vectors

Position vector

Unit vector

Direction angle of a vector v

Dot product

Angle θ between two nonzero vectors \mathbf{u} and \mathbf{v}

A quantity having magnitude and direction; equivalent to a directed line segment \overrightarrow{PQ}

A vector whose initial point is at the origin

A vector whose magnitude is 1

The angle α , $0^{\circ} \le \alpha < 360^{\circ}$, between i and v

If $v = a_1 i + b_1 j$ and $w = a_2 i + b_2 j$, then $v \cdot w = a_1 a_2 + b_1 b_2$.

$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}, 0 \le \theta \le \pi$$

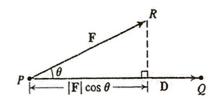
CALCULATING PROJECTIONS

The projection of u onto v is the vector proj, u given by

$$\operatorname{proj}_{v} u = \left(\frac{u \cdot v}{|v|^{2}}\right) v$$

If the vector \mathbf{u} is resolved into \mathbf{u}_1 and \mathbf{u}_2 , where \mathbf{u}_1 is parallel to \mathbf{v} and \mathbf{u}_2 is orthogonal to \mathbf{v} , then

$$\mathbf{u}_1 = \operatorname{proj}_{\mathbf{v}} \mathbf{u}$$
 and $\mathbf{u}_2 = \mathbf{u} - \operatorname{proj}_{\mathbf{v}} \mathbf{u}$



$$W = \text{force} \times \text{distance} = (|\mathbf{F}| \cos \theta) |\mathbf{D}|$$

THE CROSS PRODUCT

If $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ and $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$ are three-dimensional vectors, then the cross product of \mathbf{a} and \mathbf{b} is the vector

$$\mathbf{a} \times \mathbf{b} = \langle a_2 b_3 - a_3 b_2, a_3 b_1 - a_1 b_3, a_1 b_2 - a_2 b_1 \rangle$$

CROSS PRODUCT THEOREM

The vector $\mathbf{a} \times \mathbf{b}$ is orthogonal (perpendicular) to both \mathbf{a} and \mathbf{b} .



Right-hand rule

LENGTH OF THE CROSS PRODUCT

If θ is the angle between a and b (so $0 \le \theta \le \pi$), then

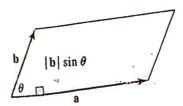
$$|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}| |\mathbf{b}| \sin \theta$$

In particular, two nonzero vectors a and b are parallel if and only if

$$\mathbf{a} \times \mathbf{b} = \mathbf{0}$$

AREA OF A PARALLELOGRAM

The length of the cross product $\mathbf{a} \times \mathbf{b}$ is the area of the parallelogram determined by \mathbf{a} and \mathbf{b} .



VOLUME OF A PARALLELEPIPED

The volume of the parallelepiped determined by the vectors a, b, and c is the magnitude of their scalar triple product:

$$V = |\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})|$$

In particular, if the volume of the parallelepiped is 0, then the vectors **a**, **b**, and **c** are coplanar.

