Chapter 2 Organizing and Summarizing Data

$$
\text { Relative Frequency }=\frac{\text { frequency }}{\text { sum of all frequencies }}
$$

Class midpoint: The sum of consecutive lower class limits, divided by 2 .

Chapter 3 Numerically Summarizing Data

Listed Data

Mean
Population: $\quad \mu=\frac{\sum x_{i}}{N}$
Sample: $\quad \bar{x}=\frac{\sum x_{i}}{n}$

Standard Deviation

$$
\begin{array}{ll}
\text { Population: } & \sigma=\sqrt{\frac{\sum\left(x_{i}-\mu\right)^{2}}{N}} \\
\text { Sample: } & S=\sqrt{\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{n-1}}
\end{array}
$$

Variance $=$ standard deviation squared σ^{2} or s^{2}
Range = Largest Data Value - Smallest Data Value
Class width $=\frac{\text { range }}{\text { number of classes }}$ (round up)
Empirical Rule: If the shape of the distribution is bellshaped, then:

Grouped Data (frequency distribution)

Mean
Population: $\quad \mu=\frac{\Sigma x_{i} f_{i}}{\sum f_{i}}$
Sample: $\bar{x}=\frac{\Sigma x_{i} f_{i}}{\sum f_{i}}$
Weighted: $\quad \bar{x}_{w}=\frac{\sum w_{i} x_{i}}{\sum w_{i}}$
Standard Deviation
Population: $\quad \sigma=\sqrt{\frac{\sum\left(x_{i}-\mu\right)^{2} f_{i}}{\Sigma f_{i}}}$
Sample: $\quad S=\sqrt{\frac{\sum\left(x_{i}-\bar{x}\right)^{2} f_{i}}{\left(\Sigma f_{i}\right)-1}}$
z -score (standardized test statistic):
Population: $Z=\frac{x-\mu}{\sigma}$
Sample: $Z=\frac{x-\bar{x}}{s}$
Interquartile Range: $I Q R=\mathrm{Q}_{3}-\mathrm{Q}_{1}$

Lower and Upper Fences:
Lower: $\mathrm{Q}_{1}-1.5$ (IQR)
Upper: $\mathrm{Q}_{3}+1.5(\mathrm{IQR})$
Five-Number Summary:
Minimum, $\mathrm{Q}_{1}, \mathrm{M}, \mathrm{Q}_{3}$, Maximum

Chapter 4 Describing the Relation between Two Variables
Residual = observed y - predicted $\mathrm{y}: y-\hat{y} \quad$ Correlation Coefficient: $r=\frac{\sum\left(\frac{x_{i}-\bar{x}}{s_{x}}\right)\left(\frac{y_{i}-\bar{y}}{s_{y}}\right)}{n-1}$ The equation of the least-squares regression line is $\hat{y}=b_{1} x+b_{0}$, where \hat{y} is the predicted value, $b_{1}=r \cdot \frac{s_{y}}{s_{x}}$, is the slope, and $b_{0}=\bar{y}-b_{1} \bar{x}$ is the intercept.

UNIT 2 FORMULA SHEET

for Sullivan, Statistics: Informed Decisions Using Data@2017 Pearson Education, Inc.
Chapter 5 Probability

Empirical Probability:
$P(E)=\frac{\text { frequency of } E}{\text { number of trials of the experiment }}$
Classical Probability:

$$
\begin{gathered}
P(E)=\frac{N(E)}{N(S)} \\
=\frac{\text { number of ways that E can occur }}{\text { number of possible outcomes }}
\end{gathered}
$$

Compliment Rule: $P\left(E^{c}\right)=1-P(E)$
Multiplication Rule of Counting: the number of ways for a series of events ($E_{1}, E_{2}, E_{3} \ldots$) to occur in order $=\left(n\left(E_{1}\right)\right)\left(n\left(E_{2}\right)\right)\left(n\left(E_{3}\right)\right) \ldots$

Factorial: n ! $=\mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2) \ldots(3)(2)(1)$
Permutation of n objects taken r at a time:

$$
n P r=\frac{n!}{(n-r)!}
$$

Combination of n objects taken r at a time:

$$
n C r=\frac{n!}{r!(n-r)!}
$$

Permutations with Repetition:

$$
\frac{n!}{n_{1}!n_{2}!\ldots n_{k}!}
$$

Addition Rule for Disjoint Events:

$$
P(E \text { or } F)=P(E)+P(F)
$$

Addition Rule for n Disjoint Events:
$P(E$ or F or G or.... $=P(E)+P(F)+P(G)+\ldots$
General Addition Rule:
$P(E$ or $F)=P(E)+P(F)-P(E$ and $F)$

Multiplication Rule for Independent Events:

$$
P(E \text { and } F)=P(E) \bullet P(F)
$$

Multiplication Rule for n Independent Events:
$P(E$ and F and $G . .)=$.

$$
P(E) \bullet P(F) \bullet P(G) \bullet . . .
$$

General Multiplication Rule:

$$
P(E \text { and } F)=P(E) \bullet P(F / E)
$$

Conditional Probability Rule:

$$
P(F / E)=\frac{P(E \text { and } F)}{P(E)}=\frac{N(E \text { and } F)}{n(E)}
$$

Chapter 6 Discrete Probability Distributions

Mean (Expected Value) of a Discrete Random Variable:

$$
\mu_{x}=\Sigma[x P(x)]
$$

Standard Deviation of a Discrete Random Variable:

$$
\sigma_{x}=\sqrt{\sum\left[(x-\mu)^{2} P(x)\right]}
$$

Chapter 7 The Normal Distribution

Standardizing a Normal Random Variable:

$$
z=\frac{x-\mu}{\sigma}
$$

Finding the score (cut off for a given percent):

$$
x=\mu+z \sigma
$$

Chapter 8 Sampling Distributions

Sampling distribution of $\widehat{\boldsymbol{p}}$

Sample proportion $\hat{p}=\frac{x}{n}$

$$
\begin{aligned}
& \mu_{\hat{p}}=p \\
& \sigma_{\hat{p}}=\sqrt{\frac{p(1-p)}{n}} \\
& z=\frac{\hat{p}-\mathrm{p}}{\sqrt{\frac{p(1-p)}{n}}} \\
& n \leq 0.05 N \text { and } n p(1-p) \geq 10
\end{aligned}
$$

Sampling distribution of \bar{x}

$\mu_{\bar{x}}=\mu$
$\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}}$
$Z=\frac{\bar{x}-\mu}{\frac{\sigma}{\sqrt{n}}}$
Underlying distribution is normal OR n ≥ 30

$$
\bar{x}=\mu_{\bar{x}}+z \sigma_{\bar{x}}
$$

Chapter 9 Estimating the Value of a Parameter

Confidence Intervals

Proportion

$(1-\alpha) * 100 \%$ confidence interval about p is:

$$
\begin{gathered}
\hat{p} \pm E \\
E=z_{\alpha / 2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}
\end{gathered}
$$

Sample size to estimate the population proportion with a margin of error E

- $\quad \hat{p}$ is a prior estimate of the population proportion:
$n=\hat{p}(1-\hat{p})\left(\frac{z_{\alpha / 2}}{E}\right)^{2}$ rounded up to the next integer
- No prior estimate is available:
$n=0.25\left(\frac{z_{\alpha / 2}}{E}\right)^{2}$ rounded up to the next integer

Confidence Intervals

Mean

$(1-\alpha)^{*} 100 \%$ confidence interval about μ is:

$$
\begin{gathered}
\bar{x} \pm E \\
E=t_{\propto / 2} \frac{\mathrm{~s}}{\sqrt{n}}
\end{gathered}
$$

Sample size to estimate the population mean with a margin of error E

- $n=\left(\frac{z_{\alpha / 2} * S}{E}\right)^{2}$ rounded up to the next integer

Chapter 10 Hypothesis Tests Regarding a Parameter

Proportion

$$
z=\frac{\hat{p}-p_{0}}{\sqrt{\frac{p_{0}\left(1-p_{0}\right)}{n}}}
$$

Mean
$t=\frac{\bar{x}-\mu_{0}}{\frac{\mathrm{~s}}{\sqrt{n}}}$

