STOICHIOMETRY

How can one determine the amount of product formed from a specific reactant?
Or the relationship between different compounds in an equation?

This is where you use stoichiometry.

Take for example pizza, if 1 crust, 3 cups of cheese, and 1 cup of sauce make one pizza, how much pizza can you make with 9 cups of cheese assuming you have all other ingredients?

We solve these equations with a process called dimensional analysis.
Through dimensional analysis, we chemists can convert between several different units from quantity to mass to volume and many more.

Here is an example of a conversion done by dimensional analysis:

9 eups of Cheose	1 pizza
	3 cups of Cheese

Something to note when doing dimensional analysis is that all units should cancel except for the final answer.

In the context of chemistry, your dimensional analysis may look more like this:

$45-\mathrm{g} \mathrm{NH}_{3}$	$1 \mathrm{~mol} \mathrm{NH}_{3}$	6.022×10^{23} molecules NH_{3}	3 H atoms		
1	$17 \mathrm{~g} \mathrm{NH}_{3}$	$1 \mathrm{~mol} \mathrm{NH}_{3}$	1 molecule NH_{3}		$4.8 \times 10^{24} \mathrm{H}$
:---:					
atoms					

$$
\xrightarrow\left[\left(\frac{\mathrm{mol}}{\left(\frac{6.022 \times 10^{23}}{\mathrm{~mol}}\right)} \stackrel{\left(\frac{\mathrm{mol}}{6.022 \times 10^{23}}\right)}{\stackrel{(}{2}}\right]{\stackrel{(2)}{ }}\right.
$$

Formula Unit
Atoms
Molecules

Now when doing Stoichiometry, we almost always convert to and from the unit Mole, the base unit amount of a substance.

Let's look at some conversions!

Moles/Mass

When using the mass of any element or compound in dimensional analysis, you will convert using that substance's molar mass. This is found from the atomic mass on the periodic table.

For example, the molar mass of carbon is $12.0111 \mathrm{~g} / \mathrm{mol}$. Knowing this information, one can find the mass in grams of carbon when given an amount in moles or vise versa.

Ex. How many grams of carbon are found in .726 moles of carbon?

Mole/Molecules

When converting between moles and molecules of a substance, one would use Avagadro's number, 6.022×10^{23} molecules $/ \mathrm{mol}$ as the constant.

Ex. How many gold atoms are there in a sample of 1.28 moles of gold?

your Try!
3. How many water molecules are in a sample of 3.094 mol of water?
4. How many mole of MgCl_{2} are 1.9×10^{24} atoms of MgCl_{2} ?

Mass/Molecule

When going back and forth from grams to number of molecules, one has to establish the value for moles of that substance as a segue and cancel the moles unit in the dimensional analysis. See this in the example below:

Ex. How many molecules of NaBH_{4} are in a sample of 197 grams?

$197 \mathrm{~g} \mathrm{NaBH}_{4}$	$1 \mathrm{~mol} \mathrm{NaBH}_{4}$	6.022×10^{23} molecules $^{\mathrm{NaBH}_{4}}$	$=3.14 \times 10^{24}$ 1
$37.83 \mathrm{~g} \mathrm{NaBH}_{4}$	$1 \mathrm{~mol} \mathrm{NaBH}_{4}$	molecules NaBH_{4}	

5. How many molecules of CuSO_{3} are in 5.7 grams of the compound?
6. What is the mass of 9.64×10^{23} molecules of SeO_{2} ?

Stoichiometry between Molecules

The essence of stoichiometry is to determine the relationships between different molecules in a reaction. Now we have to cancel between molecule specific units, i.e. grams of $\mathrm{CO}_{2}\left(\mathrm{~g} \mathrm{CO}_{2}\right)$ cannot cancel with grams of $\mathrm{O}_{2}\left(\mathrm{~g} \mathrm{O}_{2}\right)$. To do this you first convert to moles, the use the mole ratio, and convert to what you need to find.

Ex. Consider the following reaction. How many moles of oxygen are required to produce 2.33 moles of water? Assume that there is excess C 3 H 7 SH present.

$$
\mathrm{C} 3 \mathrm{H} 7 \mathrm{SH}(\mathrm{l})+6 \mathrm{O} 2(\mathrm{~g}) \rightarrow 3 \mathrm{CO} 2(\mathrm{~g})+\mathrm{SO} 2(\mathrm{~g})+4 \mathrm{H} 2 \mathrm{O}(\mathrm{~g})
$$

7. How many moles of oxygen are formed when 58.6 g of KNO_{3} decomposes according to the following reaction? The molar mass of KNO_{3} is $101.11 \mathrm{~g} / \mathrm{mol}$.

$$
4 \mathrm{KNO}_{3}(\mathrm{~s}) \rightarrow 2 \text { к2о(s) }+2 \mathrm{~N}_{2}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g})
$$

8. How many moles of nitrogen are formed when 58.6 g of KNO_{3} decomposes according to the following reaction? The molar mass of KNO_{3} is $101.11 \mathrm{~g} / \mathrm{mol}$.

$$
4 \mathrm{KNO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{~K}_{2} \mathrm{O}(\mathrm{~s})+2 \mathrm{~N}_{2}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g})
$$

9. According to the following reaction, how many grams of sulfur are formed when 37.4 g of water are formed?

$$
2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+\mathrm{SO}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{~S}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

10. Consider the following balanced reaction. How many grams of water are required to form 75.9 g of HNO_{3} ? Assume that there is excess NO_{2} present. The molar masses are as follows: $\mathrm{H}_{2} \mathrm{O}=18.02 \mathrm{~g} / \mathrm{mol}, \mathrm{HNO}_{3}=63.02 \mathrm{~g} / \mathrm{mol}$.

$$
3 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow 2 \mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{NO}(\mathrm{~g})
$$

11. Consider the following balanced reaction. What mass (in g) of CO_{2} can be formed from 288 mg of O_{2} ? Assume that there is excess $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{SH}$ present.

$$
\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{SH}(\mathrm{I})+6 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{SO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

12. A 14.01 g sample of N_{2} reacts with 3.02 g of H_{2} to form ammonia $\left(\mathrm{NH}_{3}\right)$. If ammonia is the only product, what mass of ammonia is formed?

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

Concentration Stoichiometry

Molarity ($\mathrm{mol} / \mathrm{L}$) of a substance can also be used as a method of conversion to find the mass, mole, volume and a variety of other quantities of a substance.

Ex. What volume of 0.244 M KCl solution is required to react exactly with 50.0 mL of $0.210 \mathrm{M} \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ solution?

$$
2 \mathrm{KCl}(\mathrm{aq})+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow \mathrm{PbCl}_{2}(\mathrm{~s})+2 \mathrm{KNO}_{3}(\mathrm{aq})
$$

| 50.0 mL
 $\mathrm{~Pb}\left(\mathrm{NO}_{3+2}\right.$ | 1 L
 $\mathrm{~Pb}\left(\mathrm{NO}_{3+2}\right.$ | 0.210 mol
 $\mathrm{~Pb}\left(\mathrm{NO}_{3+2}\right.$ | 2 mol KCl | 1 L KCl |
| :---: | :---: | :---: | :---: | :---: | :---: | | 1 mol |
| :---: |
| 1 |

13. What volume of $0.305 \mathrm{M} \mathrm{AgNO}_{3}$ is required to react exactly with 155.0 mL of $0.274 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$ solution?

$$
2 \mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Ag}_{2} \mathrm{~S}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})
$$

14. According to the following reaction, what mass of PbCl_{2} can form from 235 mL of 0.110 M KCl solution? Assume that there is excess $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$.

$$
2 \mathrm{KCl}(\mathrm{aq})+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow \mathrm{PbCl}_{2}(\mathrm{~s})+2 \mathrm{KNO}_{3}(\mathrm{aq})
$$

Answer Key

1. 350.4 g
2. 0.180 mol
3. 1.863×10^{24} molecules
4. 3.16 mol
5. 2.4×10^{22} molecules
6. 178 g
7. 0.724 mol
8. 0.290 mol
9. 99.8 g
10.10 .9 g
11.0 .198 g
12.17 .01 g
13.278 mL
14.3 .59 g
