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Introduction to Radicals 
 

 

 

 

√𝑎
𝑛

 
 

 

The symbol √  that we use to denote the principal square root is called a radical or radical sign for any 

real number 𝑎, and integer 𝑛 ≥ 2. 

 

“Roots” (or “radicals”) are the “opposite” operation of applying exponents; we can “undo” a power with 

a radical, and we can “undo” a radical with a power. 

 

If the radicand has a perfect 𝒏𝒕𝒉 power, we can get rid of the radical.  If the radicand has a perfect 𝒏𝒕𝒉 

power factors, each one of those factors can be out from the radical to be simplified. 

 

 

 

 

 

 

 

For example, 

22 = 4, 𝑠𝑜 √4 = 2 

52 = 25, 𝑠𝑜 √25 = 5 

𝑛2 𝑛 
Square: 

(𝑛)2 

Square Root: 

√𝑛2 

Radical Sign Radicand 

< Radical Expression > 

Index 

Perfect squared number 

under the square root 
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Let’s simplify √49. 

 

 

 

 

 

So, √49 = 7. 

 

 

Then, how can we simplify √−27
3

 ?  

 

 

 

 

 

 

 So, √−27
3

= −3. 

 

 

Ex1) Simplify:  

 a.  √64 = √8 ∙ 8 = √82 = 

 b.  √
1

81
= √

1

          
∙

1

         
= √(

1

          
)

2
= 

 c.  −√0.008
3

= −√                ∙                 ∙                  
3

 = −√(               )33
=  

 d.  √−𝑥55
= 

 

49 7 

Square: 

72 

Square Root: 

√49 = √72 

 

 

−27 −3 

Cube: 

(−3)3 

Cube Root: 

√−27
3

= √(−3)33
 

 

 

Perfect squared number 

under the square root 

Perfect cubed number 

under the cube root 
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The Product and Quotient Rules for Radicals 

If √𝑎
𝑛

 and √𝑏
𝑛

 are real numbers, and 𝑛 is an integer ( 𝑛 ≥ 2), then 

 

√𝑎𝑏
𝑛

= √𝑎
𝑛

∙ √𝑏
𝑛

  𝑎𝑛𝑑  √𝑎
𝑛

∙ √𝑏
𝑛

= √𝑎𝑏
𝑛

, 

√
𝑎

𝑏

𝑛
=

√𝑎
𝑛

√𝑏
𝑛 , 𝑏 ≠ 0  𝑎𝑛𝑑  

√𝑎
𝑛

√𝑏
𝑛 = √

𝑎

𝑏

𝑛
, 𝑏 ≠ 0. 

 

 

Ex2) Let’s simplify the following radical expressions. 

a.  √450 = √5 ∙ 9 ∙ 10 = √2 ∙ 32 ∙ 52 = 3 ∙ 5 ∙ √2 = 15√2 

b.  √48𝑥6𝑦73
= √2 ∙ 23 ∙ 3 ∙ 𝑥3 ∙ 𝑥3 ∙ 𝑦3 ∙ 𝑦3 ∙ 𝑦

3
= 2 ∙ 𝑥 ∙ 𝑥 ∙ 𝑦 ∙ 𝑦 ∙ √2 ∙ 3 ∙ 𝑦3 = 2𝑥2𝑦2 √6𝑦3

 

 

c.  √81𝑎9𝑏84
= 

 

d.  √
16𝑐5𝑑7

250𝑐2𝑑2

3
= 

 

 

 

Is the square root of a negative number a real number such as √−25 ? 

Is there a real number whose square is -25?  No. Thus, √−25 is not a real number. 

Under the square root or even root (if the index is even), the 

radicand should be ALWAYS a nonnegative number to be a real number.  



STEM Center (BLRC 200) 
Academic Success Center 

HCC Brandon Campus 

 

 

Definition of the Principal 𝒏𝒕𝒉 root of a real number 𝒂: 

√𝑎
𝑛

= 𝑏 means that 𝑏𝑛 = 𝑎. 

If 𝑛, the index, is even, then 𝑎 is nonnegtive (𝑎 ≥ 0) and 𝑏 is also nonnegative (𝑏 ≥ 0). If 𝑛 is 

odd, 𝑎 and 𝑏 can be any real numbers. 

 

If the index 𝑛 is an odd number, a root is said to be an odd root. Likewise, if the index 𝑛 is an even 

number, a root is said to be an even root. 

If 𝑛 is odd, √𝑎𝑛𝑛
= 𝑎.  ex)  √(−2)33

= −2 

If 𝑛 is even, √𝑎𝑛𝑛
= |𝑎|.  ex) √(−2)44

= |−2| = 2 (or since √(−2)44
= √244

= 2) 

 

Ex3) Let’s simplify the following radical expressions: 

a.  √−81
3

= √−1 ∙ 81
3

= √−1 ∙ 343
= √(−1)3 ∙ 33 ∙ 3

3
= −3√3

3
 

b.  √𝑥10 = √              ∙            = √(          )2 = |           | 

c.  √48𝑦64
= 

d.  
3+√81𝑎2

3
= 

 

Is √𝑎 + 𝑏 equal to √𝑎 + √𝑏 ? 

Since, 

√9 + 16 = √25 = 5 

√9 + √16 = 3 + 4 = 7 

Therefore, √𝑎 + 𝑏 ≠ √𝑎 + √𝑏 . 

Likewise, √𝑎 − 𝑏 ≠ √𝑎 − √𝑏 . 
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How can we rewrite the radical expression with rational exponents? 

If √𝑎
𝑛

 represents a real number and 
𝑚

𝑛
 is a positive rational number reduced to lowest terms, and 𝑛 ≥ 2 

is an integer, then 

√𝑎
𝑛

= 𝑎
1
𝑛 . 

√𝑎𝑚𝑛
= ( √𝑎

𝑛
 )

𝑚
= 𝑎

𝑚
𝑛  . 

 

 

 

Ex4) Rewrite radical expressions with rational exponents and simplify: 

a.  √1000
3

= (1000)
1

3 = (103)
1

3 = 10
3∙(

1

3
)

= 10 

b.  (√5𝑥𝑦4 )
9

= 

 

c.  √163 = 

 

d.  √
125𝑛7

169
= 
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Operations on Radical Expressions 

Addition/Subtraction: Only can combine “like” radicals. 

 

Ex5) Add or subtract the radical expressions as indicated and simplify. 

a.  5√2 − 2√2 = (5 − 2)√2 = 3√2 

b.  4√7 + 3√11 − 2√7 + 5 = 2√7 + 3√11 + 5 

c.  3√27 − 4√2 + 5√3 = 9√3 − 4√2 + 5√3 = 

d.  4√2 − 7√25 + 2√2 − 2√8 = 

 

 

 

Operations on Radical Expressions 

Product Rule for Radicals:  The product of two 𝑛𝑡ℎ roots is the 𝑛𝑡ℎ root of the product of the radicands. 

√𝑎𝑏
𝑛

= √𝑎
𝑛

∙ √𝑏
𝑛

    and   √𝑎
𝑛

∙ √𝑏
𝑛

= √𝑎𝑏
𝑛

 

 

Ex6) Multiply the radical expressions as indicated and simplify.  

a.  √5 ∙ √10 = √50 = √25 ∙ 2 = √25 ∙ √2 = 5√2 

b.  √7
3

∙ √9𝑥63
= √7 ∙ 9 ∙ (𝑥2)33

= 

c.  √3(2 − 5√6) = 

d.  (1 + √3)
2

= 

e.  (3 + √7)(3 − √7) = 
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Radical Conjugates 

Radical expressions that involve the sum and difference of the same two terms are called conjugates.  

√𝑎 + √𝑏   and  √𝑎 − √𝑏 are conjugates of each other. 

The product of radical conjugates does not contain a radical. 

(√𝑎 + √𝑏)(√𝑎 − √𝑏) = (√𝑎)
2

− (√𝑏)
2

= 𝑎 − 𝑏 

 

For example, √2 + 3√6 and √2 − 3√6 are conjugates of each other.  And their product is, 

(√2 + 3√6)(√2 − 3√6) = (√2)
2

− √2(3√6) + √2(3√6) − (3√6)
2

= 2 − 9 ∙ 6 = −52 

 

Ex7) Determine the radical conjugate and find the product of conjugates. 

a.  5 − √7  Radical Conjugate: 5 + √7 

Product: (5 − √7)(5 + √7) = 52 − (√7)
2

= 25 − 7 = 18 

b.  3√2 + 4  Radical Conjugate: 

Product: 

 

 

 

 

c.  √11 − 2√3  Radical Conjugate: 

Product: 
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Rationalizing Denominators 

The process involving rewriting a radical expression as an equivalent expression in which the 

denominator no longer contains any radicals. 

 

Ex8)  Rationalize each denominator and simplify. 

a.  
√3

√7
=

√3

√7
∙

√7

√7
=

√3∙7

(√7)
2 =

√21

7
 

 

b.  √
7

25

3
= √

7

52

3
=

√7
3

√523 ∙
           

                
=

√7∙5
3

√533 =
√35
3

5
 

 

 

c.  
2

2+√8
=

2

2+√8
∙

2−√8

2−√8
=

2(2−2√2)

4−8
=

4(1−√2)

−4
= 

 

d.  
5

√50
= 

 

e.  
12

√7+√3
= 

  

To remove the radical in the denominator, multiplied 

the numerator and the denominator by √7. 
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Answer Key 

1.  a.  8   

b.  
1

9
   

c.  −0.2   

d.  – 𝑥 

2.  c.  3𝑎2𝑏2 √𝑎4    

d.  
2𝑐𝑑 √𝑑23

5
  

3.  b.  |𝑥5|   

c.  2𝑦 √3𝑦24
   

d.  1 + 3|𝑎| 

4.  b.  (5𝑥𝑦)
9

4   

c.  26    

d.  
5𝑛3√5𝑛

13
 

5.  c.  14√3 − 4√2   

d.  2√2 − 35 

6.  b.  𝑥2 √63
3

   

c.  2√3 − 15√2   

d.  4 + 2√3  

e.  2 

7.  b.  Radical Conjugate:  3√2 − 4  Product: (3√2 + 4)(3√2 − 4) = 2 

c.  Radical Conjugate:  √11 + 2√3  Product:  (√11 − 2√3)(√11 + 2√3) = −1 

8.  c.  −1 + √2 

d.  
√2

2
 

e.  3(√7 − √3) 

 


