Introduction to Radicals

What is a radical?

The symbol $\sqrt{ }$ that we use to denote the principal square root is called a radical or radical sign for any real number a, and integer $n \geq 2$.
"Roots" (or "radicals") are the "opposite" operation of applying exponents; we can "undo" a power with a radical, and we can "undo" a radical with a power.

If the radicand has a perfect $\boldsymbol{n}^{\text {th }}$ power, we can get rid of the radical. If the radicand has a perfect $\boldsymbol{n}^{\text {th }}$ power factors, each one of those factors can be out from the radical to be simplified.

For example,

$$
\begin{array}{cl}
2^{2}=4, & \text { so } \sqrt{4}=2 \\
5^{2}=25, & \text { so } \sqrt{25}=5
\end{array}
$$

Let's simplify $\sqrt{49}$.
Square Root:

So, $\sqrt{49}=7$.

Then, how can we simplify $\sqrt[3]{-27}$?

So, $\sqrt[3]{-27}=-3$.

Ext) Simplify:

a. $\sqrt{64}=\sqrt{8 \cdot 8}=\sqrt{8^{2}}=$
b. $\sqrt{\frac{1}{81}}=\sqrt{\frac{1}{2} \cdot \frac{1}{}}=\sqrt{\left(\frac{1}{)^{2}}\right.}=$
c. $-\sqrt[3]{0.008}=-\sqrt[3]{\sqrt{2}}=-\sqrt[3]{(\quad)^{3}}=$
d. $\sqrt[5]{-x^{5}}=$

The Product and Quotient Rules for Radicals

If $\sqrt[n]{a}$ and $\sqrt[n]{b}$ are real numbers, and n is an integer ($n \geq 2$), then

$$
\begin{aligned}
& \sqrt[n]{a b}=\sqrt[n]{a} \cdot \sqrt[n]{b} \text { and } \sqrt[n]{a} \cdot \sqrt[n]{b}=\sqrt[n]{a b} \\
& \sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}, b \neq 0 \text { and } \frac{\sqrt[n]{a}}{\sqrt[n]{b}}=\sqrt[n]{\frac{a}{b}}, b \neq 0 .
\end{aligned}
$$

Ex2) Let's simplify the following radical expressions.
a. $\sqrt{450}=\sqrt{5 \cdot 9 \cdot 10}=\sqrt{2 \cdot 3^{2} \cdot 5^{2}}=3 \cdot 5 \cdot \sqrt{2}=15 \sqrt{2}$

b. $\sqrt[3]{48 x^{6} y^{7}}=\sqrt[3]{2 \cdot 2^{3} \cdot 3 \cdot x^{3} \cdot x^{3} \cdot y^{3} \cdot y^{3} \cdot y}=2 \cdot x \cdot x \cdot y \cdot y \cdot \sqrt[3]{2 \cdot 3 \cdot y}=2 x^{2} y^{2 \sqrt[3]{6 y}}$
c. $\sqrt[4]{81 a^{9} b^{8}}=$
d. $\sqrt[3]{\frac{16 c^{5} d^{7}}{250 c^{2} d^{2}}}=$

Is the square root of a negative number a real number such as $\sqrt{-25}$?
Is there a real number whose square is -25 ? No. Thus, $\sqrt{-25}$ is not a real number.
Under the square root or even root (if the index is even), the radicand should be ALWAYS a nonnegative number to be a real number.

Definition of the Principal $n^{\text {th }}$ root of a real number a :

$\sqrt[n]{a}=b$ means that $b^{n}=a$.
If n, the index, is even, then a is nonnegtive ($a \geq 0$) and b is also nonnegative ($b \geq 0$). If n is odd, a and b can be any real numbers.

If the index n is an odd number, a root is said to be an odd root. Likewise, if the index n is an even number, a root is said to be an even root.

If n is odd, $\sqrt[n]{a^{n}}=a . \quad$ ex) $\sqrt[3]{(-2)^{3}}=-2$
If n is even, $\sqrt[n]{a^{n}}=|a|$.
ex) $\sqrt[4]{(-2)^{4}}=|-2|=2\left(\right.$ or since $\sqrt[4]{(-2)^{4}}=\sqrt[4]{2^{4}}=2$)

Ex3) Let's simplify the following radical expressions:
a. $\sqrt[3]{-81}=\sqrt[3]{-1 \cdot 81}=\sqrt[3]{-1 \cdot 3^{4}}=\sqrt[3]{(-1)^{3} \cdot 3^{3} \cdot 3}=-3 \sqrt[3]{3}$
b. $\sqrt{x^{10}}=\sqrt{\quad \cdot}=\sqrt{(\quad)^{2}}=1 \quad \mid$
c. $\sqrt[4]{48 y^{6}}=$
d. $\frac{3+\sqrt{81 a^{2}}}{3}=$

Is $\sqrt{a+b}$ equal to $\sqrt{a}+\sqrt{b}$?
Since,

$$
\begin{gathered}
\sqrt{9+16}=\sqrt{25}=5 \\
\sqrt{9}+\sqrt{16}=3+4=7
\end{gathered}
$$

Therefore, $\sqrt{a+b} \neq \sqrt{a}+\sqrt{b}$.
Likewise, $\sqrt{a-b} \neq \sqrt{a}-\sqrt{b}$.

How can we rewrite the radical expression with rational exponents?

If $\sqrt[n]{a}$ represents a real number and $\frac{m}{n}$ is a positive rational number reduced to lowest terms, and $n \geq 2$ is an integer, then

$$
\begin{gathered}
\sqrt[n]{a}=a^{\frac{1}{n}} \\
\sqrt[n]{a^{m}}=(\sqrt[n]{a})^{m}=a^{\frac{m}{n}}
\end{gathered}
$$

Ex4) Rewrite radical expressions with rational exponents and simplify:
a. $\sqrt[3]{1000}=(1000)^{\frac{1}{3}}=\left(10^{3}\right)^{\frac{1}{3}}=10^{3 \cdot\left(\frac{1}{3}\right)}=10$
b. $(\sqrt[4]{5 x y})^{9}=$
c. $\sqrt{16^{3}}=$
d. $\sqrt{\frac{125 n^{7}}{169}}=$

Operations on Radical Expressions

Addition/Subtraction: Only can combine "like" radicals.

Ex5) Add or subtract the radical expressions as indicated and simplify.
a. $5 \sqrt{2}-2 \sqrt{2}=(5-2) \sqrt{2}=3 \sqrt{2}$
b. $4 \sqrt{7}+3 \sqrt{11}-2 \sqrt{7}+5=2 \sqrt{7}+3 \sqrt{11}+5$

c. $3 \sqrt{27}-4 \sqrt{2}+5 \sqrt{3}=9 \sqrt{3}-4 \sqrt{2}+5 \sqrt{3}=$
d. $4 \sqrt{2}-7 \sqrt{25}+2 \sqrt{2}-2 \sqrt{8}=$

Operations on Radical Expressions

Product Rule for Radicals: The product of two $n^{\text {th }}$ roots is the $n^{t h}$ root of the product of the radicands.

$$
\sqrt[n]{a b}=\sqrt[n]{a} \cdot \sqrt[n]{b} \text { and } \sqrt[n]{a} \cdot \sqrt[n]{b}=\sqrt[n]{a b}
$$

Ex6) Multiply the radical expressions as indicated and simplify.
a. $\sqrt{5} \cdot \sqrt{10}=\sqrt{50}=\sqrt{25 \cdot 2}=\sqrt{25} \cdot \sqrt{2}=5 \sqrt{2}$
b. $\sqrt[3]{7} \cdot \sqrt[3]{9 x^{6}}=\sqrt[3]{7 \cdot 9 \cdot\left(x^{2}\right)^{3}}=$
c. $\sqrt{3}(2-5 \sqrt{6})=$
d. $(1+\sqrt{3})^{2}=$
e. $(3+\sqrt{7})(3-\sqrt{7})=$

Radical Conjugates

Radical expressions that involve the sum and difference of the same two terms are called conjugates.

$$
\sqrt{a}+\sqrt{b} \text { and } \sqrt{a}-\sqrt{b} \text { are conjugates of each other. }
$$

The product of radical conjugates does not contain a radical.

$$
(\sqrt{a}+\sqrt{b})(\sqrt{a}-\sqrt{b})=(\sqrt{a})^{2}-(\sqrt{b})^{2}=a-b
$$

For example, $\sqrt{2}+3 \sqrt{6}$ and $\sqrt{2}-3 \sqrt{6}$ are conjugates of each other. And their product is,

$$
(\sqrt{2}+3 \sqrt{6})(\sqrt{2}-3 \sqrt{6})=(\sqrt{2})^{2}-\sqrt{2}(3 \sqrt{6})+\sqrt{2}(3 \sqrt{6})-(3 \sqrt{6})^{2}=2-9 \cdot 6=-52
$$

Ex7) Determine the radical conjugate and find the product of conjugates.
$\begin{array}{lll}\text { a. } 5-\sqrt{7} & \text { Radical Conjugate: } & 5+\sqrt{7}\end{array}$
Product: $\quad(5-\sqrt{7})(5+\sqrt{7})=5^{2}-(\sqrt{7})^{2}=25-7=18$
b. $3 \sqrt{2}+4 \quad$ Radical Conjugate:

Product:
c. $\sqrt{11}-2 \sqrt{3} \quad$ Radical Conjugate:

Product:

Rationalizing Denominators

The process involving rewriting a radical expression as an equivalent expression in which the denominator no longer contains any radicals.

Ex8) Rationalize each denominator and simplify.
a. $\frac{\sqrt{3}}{\sqrt{7}}=\frac{\sqrt{3}}{\sqrt{7}} \cdot \frac{\sqrt{7}}{\sqrt{7}}=\frac{\sqrt{3 \cdot 7}}{(\sqrt{7})^{2}}=\frac{\sqrt{21}}{7}$

To remove the radical in the denominator, multiplied the numerator and the denominator by $\sqrt{7}$.
b. $\sqrt[3]{\frac{7}{25}}=\sqrt[3]{\frac{7}{5^{2}}}=\frac{\sqrt[3]{7}}{\sqrt[3]{5^{2}}} \cdot \square=\frac{\sqrt[3]{7 \cdot 5}}{\sqrt[3]{5^{3}}}=\frac{\sqrt[3]{35}}{5}$
c. $\frac{2}{2+\sqrt{8}}=\frac{2}{2+\sqrt{8}} \cdot \frac{2-\sqrt{8}}{2-\sqrt{8}}=\frac{2(2-2 \sqrt{2})}{4-8}=\frac{4(1-\sqrt{2})}{-4}=$
d. $\frac{5}{\sqrt{50}}=$
e. $\frac{12}{\sqrt{7}+\sqrt{3}}=$

Answer Key

1. a. 8
b. $\frac{1}{9}$
c. -0.2
d. $-x$
2. c. $3 a^{2} b^{2} \sqrt[4]{a}$
d. $\frac{2 c d \sqrt[3]{d^{2}}}{5}$
3. b. $\left|x^{5}\right|$
c. $2 y \sqrt[4]{3 y^{2}}$
d. $1+3|a|$
4. b. $(5 x y)^{\frac{9}{4}}$
c. 2^{6}
d. $\frac{5 n^{3} \sqrt{5 n}}{13}$
5. c. $14 \sqrt{3}-4 \sqrt{2}$
d. $2 \sqrt{2}-35$
6. b. $x^{2} \sqrt[3]{63}$
c. $2 \sqrt{3}-15 \sqrt{2}$
d. $4+2 \sqrt{3}$
e. 2
7. b. Radical Conjugate: $3 \sqrt{2}-4$
c. Radical Conjugate: $\sqrt{11}+2 \sqrt{3}$

Product: $(3 \sqrt{2}+4)(3 \sqrt{2}-4)=2$
Product: $(\sqrt{11}-2 \sqrt{3})(\sqrt{11}+2 \sqrt{3})=-1$
8. c. $-1+\sqrt{2}$
d. $\frac{\sqrt{2}}{2}$
e. $3(\sqrt{7}-\sqrt{3})$

